BackgroundAlthough studies report that more than 90% of pregnant women utilize digital sources to supplement their maternal healthcare, little is known about the kinds of information that women seek from their peers during pregnancy. To date, most research has used self-report measures to elucidate how and why women to turn to digital sources during pregnancy. However, given that these measures may differ from actual utilization of online health information, it is important to analyze the online content pregnant women generate.
ObjectiveTo apply machine learning methods to analyze online pregnancy forums, to better understand how women seek information from a community of online peers during pregnancy.
MethodsData from seven WhatToExpect.com "birth club" forums (September 2018; January-June 2018) were scraped. Forum posts were collected for a one-year period, which included three trimesters and three months postpartum. Only initial posts from each thread were analyzed (n = 262,238). Automatic natural language processing (NLP) methods captured 50 discussed topics, which were annotated by two independent coders and grouped categorically.
ResultsThe largest topic categories were maternal health (45%), baby-related topics (29%), and people/relationships (10%). While pain was a popular topic all throughout pregnancy, individual topics that were dominant by trimester included miscarriage (first trimester), labor (third trimester), and baby sleeping routine (postpartum period).