The human brain undergoes remarkable development with the first six postnatal months witnessing the most dramatic structural and functional changes, making this period critical for in-depth research. rsfMRI studies have identified intrinsic connectivity networks (ICNs), including the default mode network, in infants. Although early formation of these networks has been suggested, the specific identification and number of ICNs reported in infants vary widely, leading to inconclusive findings. In adults, ICNs have provided valuable insights into brain function, spanning various mental states and disorders. A recent study analyzed data from over 100,000 subjects and generated a template of 105 multi-scale ICNs enhancing replicability and generalizability across studies. Yet, the presence of these ICNs in infants has not been investigated. This study addresses this significant gap by evaluating the presence of these multi-scale ICNs in infants, offering critical insight into the early stages of brain development and establishing a baseline for longitudinal studies. To accomplish this goal, we employ two sets of analyses. First, we employ a fully data-driven approach to investigate the presence of these ICNs from infant data itself. Towards this aim, we also introduce burst independent component analysis (bICA), which provides reliable and unbiased network identification. The results reveal the presence of these multi-scale ICNs in infants, showing a high correlation with the template (rho > 0.5), highlighting the potential for longitudinal continuity in such studies. We next demonstrate that reference-informed ICA-based techniques can reliably estimate these ICNs in infants, highlighting the feasibility of leveraging the NeuroMark framework for robust brain network extraction. This approach not only enhances cross-study comparisons across lifespans but also facilitates the study of brain changes across different age ranges. In summary, our study highlights the novel discovery that the infant brain already possesses ICNs that are widely observed in older cohorts.