The fabrication and preparation of graphene-supported microwell liquid cells (GSMLCs) for in situ electron microscopy is presented in a stepwise protocol. The versatility of the GSMLCs is demonstrated in the context of a study about etching and growth dynamics of gold nanostructures from a HAuCl 4 precursor solution. GSMLCs combine the advantages of conventional silicon-and graphene-based liquid cells by offering reproducible well depths together with facile cell manufacturing and handling of the specimen under investigation. The GSMLCs are fabricated on a single silicon substrate which drastically reduces the complexity of the manufacturing process compared to two-wafer-based liquid cell designs. Here, no bonding or alignment process steps are required. Furthermore, the enclosed liquid volume can be tailored to the respective experimental requirements by simply adjusting the thickness of a silicon nitride layer. This enables a significant reduction of window bulging in the electron microscope vacuum. Finally, a state-of-the-art quantitative evaluation of single particle tracking and dendrite formation in liquid cell experiments using only open source software is presented. Video Link The video component of this article can be found at https://www.jove.com/video/59751/ Here, we present the fabrication and handling of a liquid cell approach for high-performance in situ LCTEM via static graphene-supported microwell liquid cells (GSMLCs) for TEM analyses. A sketch of the GSMLC is presented in Figure 1. GSMLCs have proven to be capable of enabling in situ high-resolution transmission electron microscopy (HRTEM) results 6 and are also feasible for in situ scanning electron microscopy 29. Their Si technology-based frame allows for mass production of reproducibly shaped cells with tailored liquid thickness and extrathin membranes from a single wafer. The graphene membrane covering these cells also mitigates electron beam-induced perturbations 8,30,31