Abstract:Computational studies of Igbo language are constrained by non-availability of large electronic corpora of Igbo text, a prerequisite for data-driven morphological induction. Existing unsupervised models, which are frequent-segment based, do not sufficiently address non-concatenative morphology and cascaded affixation prevalent in Igbo morphology, as well achieving affix labelling. This study devised a data-driven model that could induce non-concatenative aspects of Igbo morphology, cascaded affixation and affix… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.