Serum and cellular proteins are targets for the formation of adducts with the β-lactam antibiotic amoxicillin. This process could be important for the development of adverse, and in particular, allergic reactions to this antibiotic. In studies exploring protein haptenation by amoxicillin, we observed that reducing agents influenced the extent of amoxicillin-protein adducts formation. Consequently, we show that thiol-containing compounds, including dithiothreitol, N-acetyl-L-cysteine and glutathione, perform a nucleophilic attack on the amoxicillin molecule that is followed by an internal rearrangement leading to amoxicillin diketopiperazine, a known amoxicillin metabolite with residual activity. The effect of thiols is catalytic and can render complete amoxicillin conversion. Interestingly, this process is dependent on the presence of an amino group in the antibiotic lateral chain, as in amoxicillin and ampicillin. Furthermore, it does not occur for other β-lactam antibiotics, including cefaclor or benzylpenicillin. Biological consequences of thiol-mediated amoxicillin transformation are exemplified by a reduced bacteriostatic action and a lower capacity of thiol-treated amoxicillin to form protein adducts. Finally, modulation of the intracellular redox status through inhibition of glutathione synthesis influenced the extent of amoxicillin adduct formation with cellular proteins. These results open novel perspectives for the understanding of amoxicillin metabolism and actions, including the formation of adducts involved in allergic reactions.Recent work of our group identified several serum proteins as potential targets for haptenation by amoxicillin (AX) [8]. In addition, intracellular proteins are also susceptible of covalent modification by this antibiotic [9,10]. Nucleophilicity and a favorable environment appear to be important for the selective modification of proteins on certain residues. In vitro, incubation of human serum albumin (HSA) with AX, results in the modification of several lysine residues of which, Lys190 and Lys195 appear to be the most reactive [8]. Interestingly, after oral administration of AX, only modified Lys190 has been found [11,12]. Apart from the chemical reactivity of the antibiotic and the protein residues, little is known about other factors influencing protein haptenation by AX in biological settings.Previous studies with the antibiotic sulfamethoxazole have shown that oxidative stress can potentiate the formation of protein adducts in cells [13]. This alteration of the redox status