Background
Chronic wounds are characterized by a wound healing and neovascularization deficit. Strategies to increase neovascularization can significantly improve chronic wound healing. Insulin like growth factor (IGF-1) is reported to be a keratinocyte mitogen and is believed to induce angiogenesis via a vascular endothelial growth factor (VEGF) dependent pathway. Using a novel ex vivo human dermal wound model and a diabetic impaired wound healing murine model, we hypothesized that adenoviral over expression of IGF-1 (Ad-IGF-1) will enhance wound healing and induce angiogenesis through a VEGF dependent pathway.
Methods
Ex vivo: 6 mm full thickness punch biopsies were obtained from normal human skin, and 3 mm full thickness wounds were created at the center. Skin explants were maintained at air liquid interface. Db/db murine model: 8 mm full thickness dorsal wounds in diabetic (db/db) mice were created. Treatment groups in both human ex vivo and in vivo db/db wound models include 1×108 PFU of Ad-IGF-1 or Ad-LacZ, and PBS (n=4–5/group). Cytotoxicity (LDH) was quantified at days 3, 5 and 7 for the human ex vivo wound model. Epithelial gap closure (H&E; Trichrome), VEGF expression (ELISA) and capillary density (CD 31+ CAPS/HPF) were analyzed at day 7.
Results
In the human ex vivo organ culture, the adenoviral vectors did not demonstrate any significant difference in cytotoxicity compared to PBS. Ad-IGF-1 over expression significantly increases basal keratinocyte migration, with no significant effect on epithelial gap closure. There was a significant increase in capillary density in the Ad-IGF-1 wounds. However, there was no effect on VEGF levels in Ad-IGF-1 samples compared to controls. In db/db wounds, Ad-IGF-1 over expression significantly improves epithelial gap closure and granulation tissue with a dense cellular infiltrate compared to controls. Ad-IGF-1 also increases capillary density, again with no significant difference in VEGF levels in the wounds compared to control treatments.
Conclusions
In two different models, our data demonstrates that adenoviral mediated gene transfer of IGF-1 results in enhanced wound healing and induces angiogenesis via a VEGF-independent pathway. Understanding the underlying mechanisms of IGF-1 effects on angiogenesis may help produce novel therapeutics for chronic wounds or diseases characterized by a deficit in neovascularization.