Brain tumors (BTs) are among the most malignant forms of human cancer. Unfortunately, current treatments are often ineffective and produce severe side effects. Cytotoxic gene therapy is an alternative treatment strategy, with the potential advantages of reduced toxicity to normal brain tissue. Apoptosis-inducing ''death ligands'' Fas ligand and TNF-related apoptosis-inducing ligand (TRAIL) are genes with substantial cytotoxic activity in susceptible tumor cells. Here, we compared the effectiveness of Ad vectormediated delivery of Fas ligand-green fluorescent protein (FasL-GFP) fusion protein, human TRAIL, and both genes simultaneously. We examined a panel of 13 cell lines (eight derived from primary isolates) for susceptibility to Ad5-based vector infection and for sensitivity to FasL-and TRAIL-mediated apoptosis. All cell lines were efficiently transduced, but, as expected, varied in their sensitivity to ligand-induced apoptosis. Generally, sensitivity to FasL-GFP correlated with cell surface FasR levels, but no such correlation was seen for TRAIL and its functional receptors, DR4 and DR5. The vector expressing both FasL-GFP and TRAIL was more effective than either of the single-gene vectors at comparable transduction levels, and it was effective against a broader range of cell lines. In five cell lines, coexpression resulted in apoptosis levels greater than those predicted for strictly additive activity of the two death ligands. We believe that Ad vector-mediated delivery of multiple death ligands may be developed as a potential BT therapy, either alone or in conjunction with surgical resection of the primary tumor.