The 2,160,267 bp genome sequence of Streptococcus agalactiae, the leading cause of bacterial sepsis, pneumonia, and meningitis in neonates in the U.S. and Europe, is predicted to encode 2,175 genes. Genome comparisons among S. agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and the other completely sequenced genomes identified genes specific to the streptococci and to S. agalactiae. These in silico analyses, combined with comparative genome hybridization experiments between the sequenced serotype V strain 2603 V͞R and 19 S. agalactiae strains from several serotypes using whole-genome microarrays, revealed the genetic heterogeneity among S. agalactiae strains, even of the same serotype, and provided insights into the evolution of virulence mechanisms.
Streptococcus agalactiae, or group B Streptococcus, is the leading cause of bacterial sepsis, pneumonia, and meningitis in neonates in the U.S. and Europe. Although S. agalactiae usually behaves as a commensal organism that colonizes the gastrointestinal or genital tract of 25-40% of healthy women, it can cause life-threatening invasive infection in susceptible hosts: newborn infants, pregnant women, and nonpregnant adults with underlying chronic illnesses (1, 2). Since guidelines recommending intrapartum antibiotic prophylaxis for high-risk or colonized women were issued in 1996 (3), the incidence of neonatal infections has decreased, and invasive S. agalactiae infections in immunocompromised adults have become more common. Adult disease now accounts for the majority of serious S. agalactiae infections. First recognized as a pathogen in bovine mastitis, S. agalactiae is distinguished from other pathogenic streptococci by the cell wall-associated group B carbohydrate.Another polysaccharide constitutes the organism's capsule, an important S. agalactiae virulence determinant. S. agalactiae strains of capsular serotype V were rarely isolated before the mid-1980s but now account for approximately one-third of clinical isolates in the U.S. (4-6). Type V is the most common capsular serotype associated with invasive infection in nonpregnant adults, and the emergence of type V strains over the past decade has been temporally linked to an increase in S. agalactiae disease in this population (7). As a species, S. agalactiae shares certain features with other pathogenic streptococci; however, the precise repertoire of shared and unique attributes that account for the emergence of S. agalactiae as a major pathogen for specific human populations remains undefined. To elucidate the molecular basis for S. agalactiae virulence, we determined the complete genome sequence (8) of the recent clinical type V isolate 2603 V͞R (www.tigr.org) and performed comparative analyses with other S. agalactiae strains and with other species of pathogenic streptococci.
Methods
ORF Prediction and Gene Identification.ORFs were predicted by GLIMMER (9, 10) trained with ORFs larger than 600 bp from the genomic sequence and S. agalactiae genes available in GenBank. All predicted proteins la...