Soluble guanylyl cyclase (sGC) plays an important role in cardiovascular function and catalyzes formation of cGMP. sGC is activated by nitric oxide and allosteric stimulators and activators. However, despite its therapeutic relevance, the regulatory mechanisms of sGC are still incompletely understood. A major reason for this situation is that no crystal structures of active sGC have been resolved so far. An important step toward this goal is the identification of high-affinity ligands that stabilize an sGC conformation resembling the active, "fully closed" state. Therefore, we examined inhibition of rat sGCa 1 b 1 by 38 purine-and pyrimidinenucleotides with 2,4,6,-trinitrophenyl and (N-methyl)anthraniloyl substitutions at the ribosyl moiety and compared the data with that for the structurally related membranous adenylyl cyclases (mACs) 1, 2, 5 and the purified mAC catalytic subunits VC1:IIC2.