One of the most important biomaterial characteristics involved in bacterial adhesion on intraocular lenses (IOLs) is hydrophobicity. We calculated the hydrophobicity parameters of IOLs made of 6 different materials (polymethylmethacrylate, PMMA, heparin surface-modified PMMA, HSM-PMMA, silicone, hydrophilic and hydrophobic acrylics and collamer). Values of IOL surface free energy components were determined from contact angle measurements, using the Fowkes, Owens-Wendt and Good-van Oss calculations. Contact angles were higher for silicone and hydrophobic acrylic materials and lower for collamer and hydrophilic acrylic materials. The values of IOL surface free energy components obtained with the 3 different calculations were homogenous. According to the Owens-Wendt calculation, the IOLs could be separated into dispersive implants (hydrophobic acrylic, silicone and PMMA) and polar implants (collamer, hydrophilic acrylic and HSM-PMMA).