Adhesive and locomotor performances of geckos are inherently linked by specialized morphological and biomechanical features. As such, we predict that conditions that lead to poor adhesive performance (i.e., low resistance to applied force while clinging) also lead to poor locomotor performance and behavior (i.e., slowed running speed, increased frequency and duration of stops, more failed or incomplete runs). In this study, we test the prediction that running speed changes as a function of adhesive performance in variable temperature (12 and 32°C), humidity (30, 55, 70, 80% relative humidity), and substrate wettability (hydrophilic glass, intermediately wetting plexiglass). We also expect other locomotor performance traits and behaviors, such as stopping and avoiding treatment conditions, to change as a function of adhesive performance. The results of this study do not fully support our prediction: gecko locomotor performance does not change as a function of humidity or substrate wettability, unlike adhesive performance. As an anticipated result of ectothermy, geckos run significantly slower and stop more frequently and longer at 12°C than 32°C. At high temperature, geckos required significantly more running attempts on hydrophilic glass than plexiglass to complete the experimental procedure, suggesting that this treatment condition is unfavorable. The results of this study highlight the robust locomotive response of geckos to variation in adhesive performance and environmental conditions, and have significant implications for predictions about habitat use and behavior in their natural environment.