In this study, fused deposition manufacturing (FDM) was utilized to fabricate the precision scaffolds for cartilage and bone regeneration. Cell seeding into such scaffolds was evaluated. For poly(D,l-lactide) (PLA) scaffolds used for cartilage regeneration, the structure with larger inner space, four direction stacking (4D) and small interval of fibers were better. Chondrocyte proliferated well with matrix accumulation in precision scaffolds coated with type II collagen at 4 weeks of in vitro culture. The seeding efficiency of osteoblasts in most polycaprolactone (PCL) scaffolds used for bone regeneration could arrive 50% of original cell seeding density, and the amount of cells in scaffolds increased to double fold after 2 weeks of in vitro culture. The histological cross-section also revealed proliferation and mineralization of osteoblasts among the PCL fibers. The results indicated that the highly porous and interconnected structure of precision scaffolds could benefit cell ingrowth.