Volume 11: Nano and Micro Materials, Devices and Systems; Microsystems Integration 2011
DOI: 10.1115/imece2011-64403
|View full text |Cite
|
Sign up to set email alerts
|

Adhesive and Mechanical Properties of Carbon Nanotube Probes Contacting Chemically-Treated Surfaces

Abstract: Carbon nanotubes are useful in a variety of measurement applications. In the case of Atomic Force Microscopes (AFMs), carbon nanotubes can be affixed to the tip of the AFM cantilever to improve image resolution and enable images of surfaces with deep crevices and trench structures. In this paper, the mechanical response of long, straight, small walled carbon nanotubes (SWNTs) under compressive and tensile load is examined with an atomic force microscope. Multi-dimensional force spectroscopy (MDFS) is used to s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0

Year Published

2014
2014
2014
2014

Publication Types

Select...
2

Relationship

2
0

Authors

Journals

citations
Cited by 2 publications
(4 citation statements)
references
References 0 publications
0
4
0
Order By: Relevance
“…Buchoux et al [17,18] have previously examined axial compression of SWNT on graphite and mica substrates. We present herein new evidence that adhesion between the surface and the nanotube-modified AFM tip can significantly alter the mechanical behavior of the nanotube [36]. Finally, we identify characteristic signatures in the deflection and frequency response of the cantilever that indicate buckling and slip-stick events of the CNT under compression and its adhesion to the surface under tension.…”
Section: Introductionmentioning
confidence: 79%
See 2 more Smart Citations
“…Buchoux et al [17,18] have previously examined axial compression of SWNT on graphite and mica substrates. We present herein new evidence that adhesion between the surface and the nanotube-modified AFM tip can significantly alter the mechanical behavior of the nanotube [36]. Finally, we identify characteristic signatures in the deflection and frequency response of the cantilever that indicate buckling and slip-stick events of the CNT under compression and its adhesion to the surface under tension.…”
Section: Introductionmentioning
confidence: 79%
“…Interestingly, after the buckling event (the system is now described as postbuckled), the force required to overcome the adhesion at the pinned end of the nanotube and enter the slip-stick domain is, by definition, the frictional force. A prediction can be made about the shape of the buckled nanotube as it undergoes further compression by applying an elastica model of a postbuckled column [36,39].…”
Section: Friction Analysismentioning
confidence: 99%
See 1 more Smart Citation
“…The objectives of the work presented herein were to determine the stiffness of CCNTs to axial compression and to correlate this stiffness with their composition/structure. Our approach involves attaching an individual nanotube to the tip of an atomic force microscope (AFM) probe and then using this instrument to apply a controlled mechanical load to the nanocoil [22][23][24]. Mechanical loading of straight or coiled nanotubes results in compression, buckling, and sliding on the substrate surface [9,22,23,[25][26][27][28][29][30][31][32].…”
Section: Introductionmentioning
confidence: 99%