In the fabrication of fiber-reinforced plastics materials peel plies are commonly used as an additional layer on top of the laminates to sponge up the surplus resin and to create an activated surface for adhesive bonding or coating by peel ply removal. In theory, the peel ply removal results in a new and uncontaminated fracture surface that is activated by polymer chain scission. The peel ply method is often presented as being a good surface treatment for structural bonding.In this study carbon fiber-reinforced plastics (Hexcel 1 8552= IM7) were produced by the use of five different peel plies and a release foil made of polytetrafluorethylene (PTFE). The peel plies themselves and the surfaces on the CFRP created by peeling were examined by scanning electron microscopy (SEM), x-ray photo electron spectroscopy (XPS), energy-dispersive x-ray spectroscopy (EDX), infrared (IR) spectroscopy, atomic force microscopy (AFM), and contact angle measurements to characterize the surfaces produced. Furthermore, the bond strength of lap shear and floating roller peel samples was determined with and without additional plasma treatment. For bonding, a room temperaturecuring two-component-epoxy adhesive (Hysol 1 9395) was used