The spectral statistics of a quantum oval billiard whose classical dynamical system shows bifurcations is numerically investigated in terms of the two-point correlation function (TPCF), which is defined as the probability density of finding two levels at a specific energy interval. The eigenenergy levels at the bifurcation point are found to show anomalous accumulation, which is observed as a periodic spike oscillation of the TPCF. We analyzed the eigenfunctions localizing onto the various classical trajectories in the phase space and found that the oscillation is supplied from a limited region in the phase space that contains the bifurcating orbit. We also show that the period of the oscillation is in good agreement with the period of a contribution from the bifurcating orbit to the semiclassical TPCF obtained by Gutzwiller’s trace formula [J. Math. Phys. 12, 343 (1971)].