Objectives This study evaluated hyaluronic acids (HA) with different molecular weights as potential matrices for tissue-engineered bone grafting and their possible influence on the paracrine mechanisms of adipose-derived mesenchymal stromal cells. Material and methods Murine adipose mesenchymal stromal cells (mASCs) on the fourth passage were seeded in 96-well plates, osteoinduced for 27 days and exposed for 3 days to low (HA-LW) and high/low molecular weight (HA-HLW) at previously defined concentrations. Cytokines IGF-1, VEGF, FGF-2, and BMP-2 were evaluated by quantification in the supernatant. Results Greater expression of growth factors was observed in groups with HA-HLW compared to HA-LW. Results indicated that differentiated cells secreted fewer cytokines, namely VEGF, FGF, and BMP-2 than undifferentiated mASCs (p < 0.05). IGF-1 showed its greatest expression in the mASC HA-LW group (p < 0.05). Conclusions The application of HA-HLW as cell matrix in tissue engineering did not compromise mASC paracrine effect. Also, the association of HA-HLW matrix and mASCs resulted in greater expression of osteogenic growth factors. Longer periods of cell differentiation seemed to negatively affect their capacity for local paracrine stimulation. Clinical relevance The use of HA-HLW as matrix for undifferentiated ASCs can be positive for bone regeneration, favoring its application as cell matrix in bone grafting procedures.