Adiponectin, one of the most abundant adipokines in circulation, is known for its role in regulation of body metabolism. The aim of this study was to evaluate the effects of a negative energy balance (NEB) at 2 stages of lactation (lactational NEB at the onset of lactation and an induced NEB by feed restriction near 100 d of lactation) on circulating adiponectin concentrations. We also investigated the effect of feed restriction on adiponectin concentrations in milk and the relationships of blood and milk adiponectin with selected plasma or milk variables and with measures of body condition. Plasma adiponectin was measured in 50 multiparous Holstein dairy cows throughout 3 experimental periods [i.e., period 1 = 3 wk antepartum up to 12 wk postpartum, period 2 = 3 wk of feed restriction starting at around 100 d in milk with a control (n = 25) and feed-restricted group (50% of energy requirements; n = 25), and period 3 = subsequent realimentation period for 8 wk]. Milk adiponectin was investigated among 21 multiparous cows at wk 2 and wk 12 of period 1 and wk 2 of period 2. Adiponectin concentrations in plasma and skim milk were measured using an in-house ELISA specific for bovine adiponectin. Major changes in circulating adiponectin concentrations were observed during the periparturient period, whereas energy deficiency during established lactation at around 100 d in milk and subsequent refeeding did not affect plasma adiponectin. Together with lower adiponectin concentrations in milk (μg/mL), the reduction in milk yield led to decreased adiponectin secretion via milk (mg/d) at the second week of feed restriction. Irrespective of time and treatment, milk adiponectin represented about 0.002% of total milk protein. Mean adiponectin concentrations in milk (0.61 ± 0.03 μg/mL) were about 92% lower than the mean plasma adiponectin concentrations (32.1 ± 1.0 μg/mL). The proportion of the steady-state plasma adiponectin pool secreted daily via milk was 2.7%. In view of the similar extent of NEB in both periods of energy deficiency, decreasing adiponectin concentrations seems important for accomplishing the adaptation to the rapidly increasing metabolic rates in early lactation, whereas the lipolytic reaction toward feed restriction-induced NEB during established lactation seems to occur largely independent of changes in circulating adiponectin. Key words: adiponectin , milk , energy deficiency , dairy cow
Short CommunicationWith the onset of lactation in high-producing dairy cows, milk synthesis leads to an approximately 4-fold increase in total energy requirements compared with pregnant and nonlactating state (Block et al., 2001), which is often accompanied by insufficient voluntary feed intake. The period of negative energy balance (NEB) is associated with changes in several metabolic key hormones, such as growth hormone and IGF-1, and the responsiveness of peripheral tissues for these hormones (Rhoads et al., 2007). The period of energy demand such as early lactation in dairy cattle is characterized by an incr...