The treatment of chronic wounds and other damaged tissues and organs remains a difficult task, in spite of greater adherence to recognised standards of care and a better understanding of pathophysiologic principles. Adipose derived stem cells (ADSCs), with their proliferative and impressive differentiation potential, may be used in the future in autologous cell therapy or grafting to replace damaged tissues. At this point in time, transplanted tissues are often rejected by the body. Autologous grafting would eliminate this problem. ADSCs are able to differentiate into a number of cells in vitro, for example smooth muscle cells (SMCs), when treated with lineage specific factors. SMCs play a key role in physiology and pathology as they form the principle layer of all SMC tissues. Smooth muscle biopsies are often impractical and morbid, and often lead to a low cell harvest. It has also been shown that SMCs derived from a diseased organ can lead to abnormal cells. Therefore, there is a great need for alternative sources of healthy SMCs. The use of ADSCs for cell-based tissue engineering (TE) represents a promising alternative for smooth muscle repair. This review discusses the potential uses of ADSCs and SMCs in regenerative medicine, and the potential of ADSCs to be differentiated into functional SMCs for TE and regenerative cellular therapies to repair diseased organs.