Modeling the multistep flow of energy in light-harvesting dendrimers presents a considerable challenge. Recent studies have introduced an operator approach based on a matrix representation of the connectivity between constituent chromophores. Following a review of the theory, detailed applications are now shown to exhibit the time development of the core excitation following pulsed laser irradiation and the steady-state behavior that can be expected under conditions of constant illumination. It is also shown how energy capture by whole dendrimers can be analytically related to chromophore pair-transfer properties and, in particular, the spectroscopic gradient toward the core. Indicative calculations also illustrate the consequences of tertiary folding. In each respect, the model affords opportunities to derive new, physically meaningful information on the photophysical and structural features of dendrimeric systems.