Abstract:We present a multi-level Monte Carlo (MLMC) algorithm with adaptively refined meshes and accurately computed stopping-criteria utilizing adjoint-based a posteriori error analysis for differential equations. This is in contrast to classical MLMC algorithms that use either a hierarchy of uniform meshes or adaptively refined meshes based on Richardson extrapolation, and employ a stopping criteria that relies on assumptions on the convergence rate of the MLMC levels. This work develops two adaptive refinement stra… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.