2022
DOI: 10.48550/arxiv.2206.02905
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Adjoint-based Adaptive Multi-Level Monte Carlo for Differential Equations

Abstract: We present a multi-level Monte Carlo (MLMC) algorithm with adaptively refined meshes and accurately computed stopping-criteria utilizing adjoint-based a posteriori error analysis for differential equations. This is in contrast to classical MLMC algorithms that use either a hierarchy of uniform meshes or adaptively refined meshes based on Richardson extrapolation, and employ a stopping criteria that relies on assumptions on the convergence rate of the MLMC levels. This work develops two adaptive refinement stra… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 36 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?