Wound healing, one of the most complex processes in the human body, involves the spatial and temporal synchronization of a variety of cell types with distinct roles. Slow or nonhealing skin wounds have potentially life-threatening consequences, ranging from infection to scar, clot, and hemorrhage. Recently, the advent of triboelectric nanogenerators (TENGs) has brought about a plethora of self-powered wound healing opportunities, owing to their pertinent features, including wide range choices of constitutive biocompatible materials, simple fabrication, portable size, high output power, and low cost. Herein, a comprehensive review of TENGs as an emerging biotechnology for wound healing applications is presented and covered from three unique aspects: electrical stimulation, antibacterial activity, and drug delivery. To provide a broader context of TENGs applicable to wound healing applications, state-of-the-art designs are presented and discussed in each section. Although some challenges remain, TENGs are proving to be a promising platform for human-centric therapeutics in the era of Internet of Things. Consequently, TENGs for wound healing are expected to provide a new solution in wound management and play an essential role in the future of point-of-care interventions.