2020
DOI: 10.1007/978-3-030-64583-0_19
|View full text |Cite
|
Sign up to set email alerts
|

Adjusted Measures for Feature Selection Stability for Data Sets with Similar Features

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
39
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
3
2
1

Relationship

2
4

Authors

Journals

citations
Cited by 14 publications
(39 citation statements)
references
References 12 publications
0
39
0
Order By: Relevance
“…Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\textrm{sim}(X_k, X_l)$\end{document} be the similarity of two features \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$X_k$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$X_l$\end{document} , assessed with a similarity measure that attains values in the interval \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$[0, 1]$\end{document} , for example the absolute Pearson correlation, and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\theta \in [0, 1]$\end{document} be a threshold. The stability measure SMA-Count [ 65 ] is defined as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}\begin{align*} &\text{SMA-Count} = \frac{2}{m (m-1)} \sum\limits_{i=1}^{m-1} \sum\limits_{j = i+1}^m S(V_i, V_j) \quad \textrm{with}\\ &S(V_i, V_j) = \frac{\left| V_i \cap V_j \right| \! + \!…”
Section: Methodsmentioning
confidence: 99%
See 2 more Smart Citations
“…Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\textrm{sim}(X_k, X_l)$\end{document} be the similarity of two features \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$X_k$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$X_l$\end{document} , assessed with a similarity measure that attains values in the interval \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$[0, 1]$\end{document} , for example the absolute Pearson correlation, and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\theta \in [0, 1]$\end{document} be a threshold. The stability measure SMA-Count [ 65 ] is defined as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}\begin{align*} &\text{SMA-Count} = \frac{2}{m (m-1)} \sum\limits_{i=1}^{m-1} \sum\limits_{j = i+1}^m S(V_i, V_j) \quad \textrm{with}\\ &S(V_i, V_j) = \frac{\left| V_i \cap V_j \right| \! + \!…”
Section: Methodsmentioning
confidence: 99%
“…The maximum value of SMA-Count is 1 and indicates a perfectly stable feature selection. The stability measure SMA-Count is suitable for data sets that contain highly correlated features such as gene expression data [ 41 ].…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…, V m denote m sets of selected features, |V i | the cardinality of set V i , and E [•] the expected value for a random feature selection. The unadjusted stability measure SMU and the adjusted stability measure SMA (originally called SMA-Count in [2]) are defined as…”
Section: Building Blocksmentioning
confidence: 99%
“…Even though X A and X B provide almost the same information, unadjusted measures consider the selection of X B instead of X A (or vice versa) as a lack of stability. Adjusted stability measures on the other hand take into account the similarities between the features but require more time for calculation [2].…”
Section: Introductionmentioning
confidence: 99%