2014
DOI: 10.4310/sii.2014.v7.n4.a8
|View full text |Cite
|
Sign up to set email alerts
|

Adjusting nonresponse bias in small area estimation without covariates via a Bayesian spatial model

Abstract: Sometimes a survey sample is drawn from a large area even if the estimate of interest is at a smaller subdomain level. This strategy, however necessary, may cause small sample problems. The estimation problem is further complicated by survey nonresponse. We build a Bayesian hierarchical spatial model that takes into account both small sample size and nonresponse. This Bayesian model gives the estimates of marginal satisfaction rates at subdomains even when there is no covariate available via modeling the phase… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 21 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?