Clear Cell Renal Cell Carcinoma (CC-RCC) is the most lethal of all genitourinary cancers. The functional loss of the von Hippel-Lindau (VHL) gene occurs in 90% of CC-RCC, driving cancer progression. The objective of this study was to identify chemical compounds that are synthetically lethal with VHL deficiency in CC-RCC. An annotated chemical library, the Library of Pharmacologically Active Compounds (LOPAC), was screened in parallel on VHL-deficient RCC4 cells and RCC4VHL cells with re-introduced VHL cDNA. The ROCK inhibitor, Y-27632, was identified and validated for selective targeting of VHL-deficient CC-RCC in multiple genetic backgrounds by clonogenic assays. Downregulation of ROCK1 by siRNA selectively reduced the colony forming ability of VHL-deficient CC-RCC, thus mimicking the effect of Y-27632 treatment, whereas downregulation of ROCK2 had no effect. In addition, two other ROCK inhibitors, RKI 1447 and GSK 429286, selectively targeted VHL-deficient CC-RCC. CC-RCC treatment with ROCK inhibitors is cytotoxic and cytostatic based on BrdU assay, Propidium Iodide (PI) staining, and growth curves; and blocks cell migration based on transwell assay. Importantly, knockdown of Hypoxia Inducible Factor (HIF) β in the VHL-deficient CC-RCC had a protective effect against Y-27632 treatment, mimicking VHL reintroduction. On the other hand, CC-RCCVHL cells were sensitized to Y-27632 treatment in hypoxia (2% O2). These results suggest that synthetic lethality between ROCK inhibition and VHL deficiency is dependent on HIF activation. Moreover, HIF1α or HIF2α overexpression in CC-RCCVHL cells is sufficient to sensitize them to ROCK inhibition. Finally, Y-27632 treatment inhibited growth of subcutaneous 786-OT1 CC-RCC tumors in mice. Thus, ROCK inhibitors represent potential therapeutics for VHL-deficient CC-RCC.