Background: To investigate the mechanism of miR-128-3p and MAPK14 on the protective effect of dexmedetomidine on acute lung injury in septic mice. Methods: SPF C57BL/6 mice were divided into 8 groups. The pathological changes and wet/dry weight ratio (W/D), PaO2, PaCO2, MDA, SOD and MPO levels in lung tissue and the serum levels of inflammation factors were observed. Dual luciferase reporter assay was used to verify the targeting relationship between miR-128-3p and MAPK14. qPCR and WB were used to detect the expression of miR-128-3p and MAPK14. Results: Compared with the Normal group, other groups had lower MDA, MPO, inflammatory factors levels and the expression level of MAPK14, while the content of SOD and the expression level of miR-128-3p was significantly decreased. DEX treatment and up-regulation of miR-128-3p could significantly decrease the contents of MDA, MPO, inflammatory factor levels and significantly increase the SOD content in model mice, however, MAPK14 over-expression had opposite effects. miR-128-3p up-regulation enhanced the changes of above indicators caused by DEX treatment and MAPK14 over-expression could block the protective effect of DEX on acute lung injury in septic mice. miR-128-3p up-regulation reversed the effects of MAPK14 over-expression in model mice. Conclusion: miR-128-3p can further enhance the protective effect of dexmedetomidine on acute lung injury in septic mice by targeting and inhibiting MAPK14 expression.