2016
DOI: 10.1080/18756891.2016.1175819
|View full text |Cite
|
Sign up to set email alerts
|

Adopting Relational Reinforcement Learning in Covering Algorithms for Numeric and Noisy Environments

Abstract: Covering algorithms (CAs) constitute a type of inductive learning for the discovery of simple rules to predict future activities. Although this approach produces powerful models for datasets with discrete features, its applicability to problems involving noisy or numeric (continuous) features has been neglected. In real-life problems, numeric values are unavoidable, and noise is frequently produced as a result of human error or equipment limitations. Such noise affects the accuracy of prediction models and lea… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 35 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?