Clostridium botulinum produces a binary toxin that possesses a heavy chain (-100,000 daltons) and a light chain (-50,000 daltons). The heavy chain is a binding component that directs the toxin to vulnerable cells, and the light chain is an enzyme that has mono(ADP-ribosyl)ating activity. A number of experiments have been done to help characterize the enzymatic activity of the toxin. The data reveal that the enzyme has a pH optimum within the range of 7.0 to 8.0. It is not inhibited or stimulated by physiological concentrations of sodium, potassium, calcium, or magnesium. The enzyme is inhibited by high concentrations of salt, however, as well as high concentrations of nicotinamide, thymidine, theophylline, and histamine; and it is stimulated by histone and lysolecithin. Boiling irreversibly denatures the light chain of the toxin, but denaturation caused by guanidine and urea is substantially reversible. Enzymatic activity is not altered by short exposure to lysosomal proteases, including cathepsin B, cathepsin H, dipeptidyl aminopeptidase, and catheptic carboxypeptidase B.