Selectivity of hydrophilic interaction liquid chromatography (HILIC) stationary phases is crucial for choosing a column for separating target polar compounds, which is why it is important to know the effect of each functional group on the chromatographic properties of the material. Revealing the trends in selectivity changes with variations of adsorbent structure at different stages of preparation can help to regulate the interactions of the stationary phase with analytes and create novel materials with improved performance. This article compares several silica-based HILIC stationary phases with different types of coatings, including polar polymers, antibiotic macromolecules, zwitterionic, and amide groups. Synthesized adsorbents were characterized and compared using the Tanaka test for hydrophilic stationary phases. Their chromatographic performance was evaluated using model mixtures of neutral, zwitterionic, and negatively and positively charged polar analytes. The obtained results provided better understanding of the factors affecting stationary phase selectivity.