“…The majority of preclinical OA molecular imaging in the brain has been focused on detecting the pathological changes in a glioblastoma model, and applications have also emerged in animal models of stroke, epilepsy, Alzheimer's disease (AD), and neuroinflammation (Ni et al, 2017;Xi et al, 2017;Ni et al, 2018a;Ni et al, 2018b;Ishikawa et al, 2018;Ni et al, 2020a;Kasten et al, 2020;Razansky et al, 2021). Different types of exogenous contrast agents have been developed, including synthetic (chemical dyes or nanoparticles (NPs)), semi-genetic, and genetic contrast agents (e.g., genetically encoded calcium indicators and reversibly switchable OA proteins (Roberts et al, 2018;Qian et al, 2019;Mishra et al, 2020;Farhadi et al, 2021;Qu et al, 2021;Shemetov et al, 2021)). The criteria for contrast agent applied in OA brain imaging include a suitable absorbance spectrum (>600 nm wavelength) to allow unmixing with endogenous signals (e.g., Hb/HbO and melanin) and sufficient brain penetration depth, high affinity and specific binding to the target, sufficient blood-brain barrier entrance, photostability, solubility, low toxicity, high thermodynamics for MRI probes, and optimal pharmacokinetics (Weber et al, 2016 (Pu et al, 2014;Li and Chen, 2015;Weber et al, 2016;Yang et al, 2018;Yu et al, 2019;Zhan et al, 2019;Xu et al, 2020;Cheng et al, 2021;Fan et al, 2021;Joseph et al, 2021;Qi et al, 2021a;Tuo et al, 2021;Wang et al, 2021a;Wang et al, 2021b;Zhen et al, 2021).…”