Sonoporation, the permeabilization of cell membranes following exposure to microbubbles and ultrasound, has considerable potential for therapeutic delivery. To date, engineering of microbubbles for these applications has focused primarily upon optimizing microbubble size and stability, or attachment of targeting species and/or drug molecules. In this work, it is demonstrated that the microbubble coating can also be tailored to directly influence cell permeabilization. Specifically, lipid exchange mechanisms between phospholipid microbubbles and cells can be exploited to significantly increase sonoporation efficiency in vitro. A theoretical analysis of the energy required for pore formation was carried out. From this, it was hypothesized that sonoporation could be promoted by the transfer of lipid molecules with appropriate carbon chain length and/or shape (cylindrical or conical). Spectral imaging with a hydration-sensitive membrane probe (C-Laurdan) was used to measure changes in the membrane lipid order of A-549 cancer cells following exposure to suspensions of different phospholipids. Two candidate lipids were identified, a short-chain-length phospholipid (1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)) and a medium-chain-length lysolipid (1-palmitoyl-2hydroxy-sn-glycero-3-phosphocholine (16:0 lyso-PC)). Microbubbles were prepared with matched concentrations, size distributions, and acoustic responses. Confocal microscopy was used to measure cell uptake of a model drug (propidium iodide) with and without ultrasound exposure (1 MHz, 250 kPa peak negative pressure, 1 kHz pulse repetition frequency, 10% duty cycle, 15 s exposure). Despite significantly decreasing the cell membrane lipid order, DLPC did not increase sonoporation. Microbubbles containing 16:0 lyso-PC, however, produced a âŒ5-fold increase in sonoporation compared to control microbubbles. Importantly, the lyso-PC molecules were incorporated into the microbubble coating and did not affect cell permeability prior to ultrasound exposure. These findings indicate that microbubbles can be engineered to exploit lipid exchange between microbubble shells and cell membranes to enhance drug delivery, a new optimization route that may lead to enhanced therapeutic efficacy of ultrasound-mediated treatments.