The most common form of oral candidiasis, denture-associated stomatitis, involves biofilm growth on an oral prosthetic surface. Cells in this unique environment are equipped to withstand host defenses and survive antifungal therapy. Studies of the biofilm process on dentures have primarily been limited to in vitro models. We developed a rodent acrylic denture model and characterized the Candida albicans and mixed oral bacterial flora biofilm formation, architecture, and drug resistance in vivo, using time course quantitative culture experiments, confocal microscopy, scanning electron microscopy, and antifungal susceptibility assays. We also examined the utility of the model for measurement of C. albicans gene expression and tested the impact of a specific gene product (Bcr1p) on biofilm formation. Finally, we assessed the mucosal host response to the denture biofilm and found the mucosal histopathology to be consistent with that of acute human denture stomatitis, demonstrating fungal invasion and neutrophil infiltration. This current oral denture model mimics human denture stomatitis and should be useful for testing the impact of gene disruption on biofilm formation, studying the impact of anti-infectives, examining the biology of mixed Candida-oral bacterial flora biofilm infections, and characterizing the host immunologic response to this disease process.