Two−dimensional (2D) materials with novel structures and electronic properties are promising candidates for the next generation of micro− and nano−electronic devices. Herein, inspired by the recent experimental synthesis of penta−NiN2 (ACS Nano, 2021, 15, 13539–13546), we propose for the first time a novel ternary penta−NiPN monolayer with high stability by partial element substitution. Our predicted penta−NiPN monolayer is a quasi−direct bandgap (1.237 eV) semiconductor with ultrahigh carrier mobilities (103–105 cm2V−1s−1). Furthermore, we systematically studied the adsorption properties of common gas molecules (CO, CO2, CH4, H2, H2O, H2S, N2, NO, NO2, NH3, and SO2) on the penta−NiPN monolayer and its effects on electronic properties. According to the energetic, geometric, and electronic analyses, the penta−NiPN monolayer is predicted to be a promising candidate for NO and NO2 molecules. The excellent electronic properties of and the unique selectivity of the penta−NiPN monolayer for NO and NO2 adsorption suggest that it has high potential in advanced electronics and gas sensing applications.