A novel composite MOF@cotton fibre (HCF) was prepared and characterized by FTIR, SEM, XPS and TGA. The effect of various parameters on the adsorption efficiency, such as the solution pH, contact time, initial U(VI) concentration and temperature, was studied. The maximal sorption capacity (Qm) is 241.28 mg g−1 at pH 3.0 for U(VI) according to the Langmuir isotherm adsorption model, and the kinetic and thermodynamic data reveal a relatively fast entropy-driven process (ΔH0 = 13.47 kJ mol−1 and ΔS0 = 75.47 J K−1 mol−1). The removal efficiency of U(VI) by HCF is comparable with that of pure cotton fibre and as-prepared MOF (noted as HST). However, the HST composite with cotton fibre significantly improved the treatment process of U(VI) from aqueous solutions in view of higher removal efficiency, lower cost and faster solid–liquid separation. Recycling experiments showed that HCF can be used up to five times with less than 10% efficiency loss.