Graphene, a two-dimensional monoatomic thick building block of a carbon allotrope, has emerged as nano-inclusions in cementitious materials due to its distinguished mechanical, electrical, thermal, and transport properties. Graphene nanoplatelet and its oxidized derivative graphene oxide were found to be able to reinforce and modify the cementitious materials from atomic scale to macroscale, and thereby endow them with excellent mechanical properties, durability, and multifunctionality. This article reviews the progress of fabrication, properties, mechanisms, and applications of graphenebased cementitious composites.