In a binary liquid mixture, the component possessing the lowest surface tension preferentially adsorbs at the liquid-vapor surface. In the past this adsorption behavior has been extensively investigated for critical binary liquid mixtures near the mixture's critical temperature T(c). In this fluctuation-dominated regime the adsorption is described by a universal function of the dimensionless depth zxi where xi is the bulk correlation length. Fewer studies have quantitatively examined adsorption for off-critical mixtures because, in this case, one must carefully account for both the bulk and surface crossover from the fluctuation-dominated regime (close to T(c)) to the mean-field dominated regime (far from T(c)). In this paper we compare extensive liquid-vapor ellipsometric adsorption measurements for the mixture aniline+cyclohexane at a variety of critical and noncritical compositions with the crossover theory of Kiselev and co-workers [J. Chem. Phys. 112, 3370 (2000)].