In this paper, 2D simulations were carried out to prove the potential of thermoacoustic technology in separating a binary gas mixture. A 2D model of a gas mixture separator was developed, including a loudspeaker responsible for producing acoustic waves in the separation pipe. As a result of the imposed sound waves propagating inside the separator, main parameters including pressure, temperature, and density undergo oscillations, which in turn drive the light and heavy gas components in opposite directions. Through time, one end of the separator is enriched with the light component while the other end is enriched with the heavy one. Simulations were all performed using ANSYS Fluent. The aim was to separate an ideal gas mixture of Helium–Argon and study the impact of different parameters on the separation process.