The industrial sector utilizes approximately 40% of global energy consumption. A sizeable amount of waste energy is rejected at low temperatures due to difficulty recovering with existing technologies. Thermochemical heat transformers (THT) can play a role in recovering low-temperature industrial waste heat by storing it during high supply and discharging it on demand at a higher temperature. Thus, THT will enable waste heat reintegration into industrial processes, improving overall energy efficiency and lowering greenhouse gas emissions from the industrial sector. Salt hydrate is a promising thermochemical material (TCM) because it requires a low charging temperature which can be supplied by waste heat. Furthermore, its non-toxic nature allows the implementation of a simpler and less costly open system. Despite extensive research into salt hydrate materials for thermochemical energy storage (TCES) applications, a research gap is identified in their use in THT applications. This paper aims to provide a comprehensive literature review of the advancement of THT applications, particularly for systems employing salt hydrates material. A discussion on existing salt hydrate materials used in the THT prototype will be covered in this paper, including the challenges, opportunities, and suggested future research works related to salt hydrate THT application.