Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The aqueous glucose‐to‐fructose isomerization is controlled by thermodynamics to an equilibrium limit of ~50% fructose yield. However, here we report an in‐situ fructose removal strategy enabled by an interfacial local photothermal effect in combination with relay catalysis of geminal and isolated potassium single atoms (K SAs) on graphene‐type carbon (Ksg/GT) to effectively bypass the equilibrium limit and markedly speed up glucose‐to‐fructose isomerization. At 25 ºC, an unprecedented fructose yield of 68.2% was obtained over Ksg/GT in an aqueous solution without any additives under 30‐min solar‐like irradiation. Mechanistic studies expounded that the interfacial thermoconvection caused by the local photothermal effect of the graphene‐type carbon and preferable glucose adsorption on single‐atom K could facilitate the release of in‐situ formed fructose. The geminal K SAs were prone to form a stable metal‐glucose complex via bidentate coordination, and could significantly reduce the C–H bond electron density by light‐driven electron transfer toward K. This facilitated the hydride shift rate‐determining step and expedited glucose isomerization. In addition, isolated K SAs favored the subsequent protonation and ring‐closure process to furnish fructose. The integration of the interfacial thermoconvection‐enhanced in‐situ removal protocol and tailored atomic catalysis opens a prospective avenue for boosting equilibrium‐limited reactions under mild conditions.
The aqueous glucose‐to‐fructose isomerization is controlled by thermodynamics to an equilibrium limit of ~50% fructose yield. However, here we report an in‐situ fructose removal strategy enabled by an interfacial local photothermal effect in combination with relay catalysis of geminal and isolated potassium single atoms (K SAs) on graphene‐type carbon (Ksg/GT) to effectively bypass the equilibrium limit and markedly speed up glucose‐to‐fructose isomerization. At 25 ºC, an unprecedented fructose yield of 68.2% was obtained over Ksg/GT in an aqueous solution without any additives under 30‐min solar‐like irradiation. Mechanistic studies expounded that the interfacial thermoconvection caused by the local photothermal effect of the graphene‐type carbon and preferable glucose adsorption on single‐atom K could facilitate the release of in‐situ formed fructose. The geminal K SAs were prone to form a stable metal‐glucose complex via bidentate coordination, and could significantly reduce the C–H bond electron density by light‐driven electron transfer toward K. This facilitated the hydride shift rate‐determining step and expedited glucose isomerization. In addition, isolated K SAs favored the subsequent protonation and ring‐closure process to furnish fructose. The integration of the interfacial thermoconvection‐enhanced in‐situ removal protocol and tailored atomic catalysis opens a prospective avenue for boosting equilibrium‐limited reactions under mild conditions.
The aqueous glucose‐to‐fructose isomerization is controlled by thermodynamics to an equilibrium limit of ~50% fructose yield. However, here we report an in‐situ fructose removal strategy enabled by an interfacial local photothermal effect in combination with relay catalysis of geminal and isolated potassium single atoms (K SAs) on graphene‐type carbon (Ksg/GT) to effectively bypass the equilibrium limit and markedly speed up glucose‐to‐fructose isomerization. At 25 ºC, an unprecedented fructose yield of 68.2% was obtained over Ksg/GT in an aqueous solution without any additives under 30‐min solar‐like irradiation. Mechanistic studies expounded that the interfacial thermoconvection caused by the local photothermal effect of the graphene‐type carbon and preferable glucose adsorption on single‐atom K could facilitate the release of in‐situ formed fructose. The geminal K SAs were prone to form a stable metal‐glucose complex via bidentate coordination, and could significantly reduce the C–H bond electron density by light‐driven electron transfer toward K. This facilitated the hydride shift rate‐determining step and expedited glucose isomerization. In addition, isolated K SAs favored the subsequent protonation and ring‐closure process to furnish fructose. The integration of the interfacial thermoconvection‐enhanced in‐situ removal protocol and tailored atomic catalysis opens a prospective avenue for boosting equilibrium‐limited reactions under mild conditions.
The present study performed synthesis and characterization nanocomposite based polysaccharide Chitosan/Agar and Chitosan/Agar/SiO2 nanoparticles as adsorbents for remove amoxicillin and naproxen as the pharmaceuticals from an aqueous solution. The structure and morphology of nanocomposite were investigated using X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDX), Fourier‐transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Field Emission Scanning Electron Microscopes (FE‐SEM) and Dynamic light scattering (DLS). The removal performance of the Chitosan/Agar and Chitosan/Agar/SiO2 nanoparticles nanocomposite as adsorbent for removing amoxicillin and naproxen as sample of pharmaceutical industry effluents in aqueous solutions was investigated under different influence factors, including contact time, initial concentration, pH conditions and temperature. The maximum adsorption removal for amoxicillin with Agar/Chitosan and Agar/Chitosan/SiO2 nanocomposite at initial concentrations of 20 mg/l was 97.85 % and 87.9 %, respectively. With increasing temperature from 10 to 30°C, the removal efficiency for naproxen for both adsorbents is 99 %. The prepared nanocomposites showed good performance in adsorbing naproxen and amoxicillin. The maximum adsorption efficiency of nanocomposite was 99 % and 91 % for naproxen and amoxicillin, respectively. The optimum condition for pharmaceuticals removal by the nanocomposite was initial concentration: 20 mg/l, adsorbent dose: 0.05 g, contact time: 10 min, and pH=6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.