We investigated the removal of three pollutants: methylene blue (MB), phosphorus, and nickel (Ni [II]) from water by using modified rice straw powder (RSP) and fixed-bed column adsorption technique. The experiments were conducted in single and binary solutions to study the effects of initial pollutant concentration and column bed depth on adsorption. It was observed that the maximum adsorption capacity of RSP for MB, phosphorus, and Ni (II) was 21.99, 4.22, and 4 mg/g, respectively. In the MB-phosphorus binary solution, the presence of one pollutant did not affect the adsorption of other pollutants. In the Ni (II)-MB binary solution, exhaustion time significantly decreased for Ni (II) adsorption; however, it increased for MB adsorption. The adsorption mechanism was analysed by using the Adams-Bohart, Thomas, and Yoon and Nelson models for describing the column's dynamic behaviour. The results indicated that the Thomas model was very suitable for RSP column design.