Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Protein purification is essential for biomedical and industrial applications, but current methods often face challenges like low efficiency, high cost, and limited selectivity. To overcome these drawbacks, we developed electrospun polyacrylonitrile (PAN) membranes with chitosan (Cs) and evaluated their ability to capture bovine serum albumin (BSA) and immunoglobulin G (IgG) from aqueous solutions. Comparing PAN/Cs and pristine PAN membranes, we showed Cs significantly enhances BSA adsorption. The membranes were characterized using scanning electron microscopy, Fourier Transform Infrared Spectroscopy, tensile testing, surface area analysis, energy‐dispersive X‐ray spectroscopy, and contact angle measurements. PAN/Cs membranes exhibited smooth, uniform fibers averaging 0.454 μm in diameter. The maximum BSA adsorption capacity () was 75.61 mg g−1 for PAN/Cs and 21.17 mg g−1 for PAN, while for IgG, was 28.83 mg g−1 for PAN/Cs and 19.77 mg g−1 for PAN. SDS‐PAGE electrophoresis confirmed that the eluted proteins maintained their quality and integrity. Elution efficiency of PAN/Cs membranes reached 89.13% for BSA and 62.16% for IgG. Additionally, PAN/Cs membranes selectively captured BSA and IgG when co‐dissolved in aqueous solutions. These results position PAN/Cs electrospun membranes as promising materials for efficient, cost‐effective, and selective protein purification, with potential applications in both biomedical and industrial fields.
Protein purification is essential for biomedical and industrial applications, but current methods often face challenges like low efficiency, high cost, and limited selectivity. To overcome these drawbacks, we developed electrospun polyacrylonitrile (PAN) membranes with chitosan (Cs) and evaluated their ability to capture bovine serum albumin (BSA) and immunoglobulin G (IgG) from aqueous solutions. Comparing PAN/Cs and pristine PAN membranes, we showed Cs significantly enhances BSA adsorption. The membranes were characterized using scanning electron microscopy, Fourier Transform Infrared Spectroscopy, tensile testing, surface area analysis, energy‐dispersive X‐ray spectroscopy, and contact angle measurements. PAN/Cs membranes exhibited smooth, uniform fibers averaging 0.454 μm in diameter. The maximum BSA adsorption capacity () was 75.61 mg g−1 for PAN/Cs and 21.17 mg g−1 for PAN, while for IgG, was 28.83 mg g−1 for PAN/Cs and 19.77 mg g−1 for PAN. SDS‐PAGE electrophoresis confirmed that the eluted proteins maintained their quality and integrity. Elution efficiency of PAN/Cs membranes reached 89.13% for BSA and 62.16% for IgG. Additionally, PAN/Cs membranes selectively captured BSA and IgG when co‐dissolved in aqueous solutions. These results position PAN/Cs electrospun membranes as promising materials for efficient, cost‐effective, and selective protein purification, with potential applications in both biomedical and industrial fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.