Hollow carbon spheres (HCS) with specific surface areas as high as 2239 m2/g were prepared by chemical vapor deposition with ferrocene as the carbon precursor and colloidal silica spheres as the template. Chemical oxidative polymerization of aniline in the presence of the HCS yielded composite materials with a layer of polyaniline (PANI) deposited on the external surface of the HCS. The electrocapacitive properties of the composite materials (HCS-PANI) with different PANI contents were evaluated using cyclic voltammetry, galvanostatic charge−discharge, and electrochemical impedance spectroscopy techniques. Results showed that the specific capacitances of the HCS before and after PANI coating were, respectively, 268 and 525 F/g in an aqueous H2SO4 electrolyte, which is almost doubly enhanced. A maximum energy density of 17.2 Wh/kg was achieved for the HCS-PANI electrode at a discharge current density of 0.1 A/g. However, the energy density of the HCS-PANI electrodes with higher PANI contents (>65 wt %) declined quickly as the power density increased. An asymmetric supercapacitor using the composite material as the positive electrode and HCS as the negative electrode showed good electrochemical stability, with 73% of the capacitance, 75% of the energy density, and almost 100% of the power density being retained after 1000 cycles at a current density of 1.0 A/g.