Abstract:The flotation behaviors of perovskite, titanaugite, and magnesium aluminate spinel (MA-spinel), using octyl hydroxamic acid (OHA) as the collector, were investigated using microflotation experiments, zeta-potential measurements, Fourier transform infrared (FT-IR) analyses, X-ray photoelectron spectroscopy (XPS) analyses, and flotation experiments on artificially mixed minerals. The microflotation experiments show that the floatability of perovskite is clearly better than titanaugite and MA-spinel at around pH 5.5, while titanaugite possesses certain floatability at pH 6.0-6.5, and MA-spinel displays good floatability at pH > 8.0. The results of the FT-IR and XPS analyses show that OHA mainly interacts with Ti, resulting in perovskite flotation, and that the Al on titanaugite, as well as the Mg and Al on the MA-spinel surface, chemically react with OHA under acidic conditions. However, OHA mainly reacts with the Ti and Ca on the perovskite surface, Ca and Mg on the titanaugite surface, and Mg and Al on the MA-spinel surface under alkaline conditions. The results of the artificially mixed mineral flotation experiment show that the concentrate of TiO 2 grade increased from 19.73% to 30.18% at pH 5.4, which indicates that a weakly acidic solution is the appropriate condition for the flotation separation of perovskite from titanaugite and MA-spinel. The results of the modified slag flotation experiments show that the TiO 2 grade of concentrate increased from 18.13% to 23.88% at pH 5.4, through the open circuit test of "one roughing and one cleaning". OHA displays selectivity toward perovskite in the modified slag flotation, but the consumption of H 2 SO 4 is very high. The CaSO 4 precipitate covered on the mineral surfaces results in poor TiO 2 grade and recovery.