The aim of this study was to compare the effect of modifying calcium bentonite (Bent-Ca) clay with two cationic polymers, chitosan (Chi) and polyethylenimine (PEI), on the removal of remazol black B (RB-B) dye from an aqueous solution. The samples were characterized by using scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The fractional factorial design of 2 (6−1) was applied to investigate the effects of pH, temperature, amount of adsorbent, initial dye concentration, contact time, and shaking rate on the adsorption process. To further optimize RB-B removal from an aqueous solution, a Box−Behnken design with three factors and a response surface methodology was used. The optimum conditions were a pH of 3.77, a temperature of 40.45 °C, and an initial RB-B concentration of 77.27 mg L −1 for Bent-Ca-Chi, whereas for Bent-Ca-PEI, the optimum conditions were a pH of 5.53, a temperature of 41.06 °C, and an initial dye concentration of 238.89 mg L −1 . To understand the adsorption behavior, the Langmuir and Freundlich isotherms were fitted to the experimental data. It was found that the Langmuir isotherm model matched well with the dye adsorption by Bent-Ca-Chi and Bent-Ca-PEI. The kinetics study was performed using three kinetic models: pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. Among these models, the RB-B dye kinetics were best represented by the pseudo-second-order model equation for the adsorbents.