The adsorption of nitrogen-containing compounds (NCCs) including 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2,4-dinitroanisole (DNAN), and 3-nitro-1,2,4-triazol-5-one (NTO) on kaolinite surfaces was investigated. The M06-2X and M06-2X-D3 density functionals were applied with the cluster approximation. Several different positions of NCCs relative to the adsorption sites of kaolinite were examined, including NCCs in perpendicular and parallel orientation toward both surface models of kaolinite. The binding between the target molecules and kaolinite surfaces was analyzed and bond energies were calculated applying the atoms in molecules (AIM) method. All NCCs were found to prefer a parallel orientation toward both kaolinite surfaces, and were bound more strongly to the octahedral than to the tetrahedral site. TNT exhibited the strongest interaction with the octahedral surface and DNAN with the tetrahedral surface of kaolinite. Hydrogen bonding was shown to be the dominant non-covalent interaction for NCCs interacting with the octahedral surface of kaolinite with a small stabilizing effect of dispersion interactions. In the case of adsorption on the tetrahedral surface, kaolonite-NCC binding was shown to be governed by the balance between hydrogen bonds and dispersion forces. The presence of water as a solvent leads to a significant decrease in the adsorption strength for all studied NCCs interacting with both kaolinite surfaces.