In this study, electrochemistry pretreatment flotation of muscovite was carried out and the flotation behavior and mechanism of muscovite in the system of sodium oleate and Cu2+ion was characterized by solution pH value detection, solution conductivity detection, zeta potential, infrared spectrum and the electronic energy spectrum. The results indicated that under the conditions of muscovite mass of 10.00 g, pulp mass concentration of 13.33%, flotation speed of 1750 r/min, sodium oleate concentration of 9.20 × 10−4 mol/L and Cu2+ concentration of 6 × 10−5 mol/L, electrochemical pretreatment of Cu2+ could strengthen the activation of muscovite. Electrochemical pretreatment of Cu2+ solution can inhibit the hydrolysis of copper ions, increase the content of Cu2+ in the solution, strengthen the adsorption of Cu2+ on the muscovite surface, and enhance the electrostatic adsorption of sodium oleate on the muscovite surface, thereby strengthening the physical and chemical adsorption of sodium oleate on the muscovite surface.