As global temperatures and precipitation become more extreme, habitat specialists are at particular risk of being pushed past their environmental tolerance limits. Flammulated Owls (Psiloscops flammeolus) are small migratory owls that breed in temperate conifer forests of western North America. Their highly specialized nesting and foraging requirements make them indicators of ecosystem health. Using 17 years of nest observations, we investigated how annual weather patterns affected Flammulated Owl nesting and foraging behaviors during the breeding season. We used generalized linear models with a changepoint parameter to evaluate nest provisioning and nestling growth rates in years of extreme temperature and precipitation. We also evaluated how adult mass, division of labor, and productivity varied based on precipitation and temperature. Compared to wet and warm years, adults made more frequent prey deliveries to nestlings in dry and cold years, particularly early in the night and early in the season, and they experienced earlier changepoints in these years. We found a significant effect of temperature on the number of fledglings in broods, but weather did not affect other variables including productivity, nestling growth rates, adult masses, and division of labor. Our findings suggest that extreme annual weather patterns influence insect prey availability during the Flammulated Owl breeding season, forcing adults to work harder to provision for nests during dry and cold years. While productivity and nestling growth did not vary between years, these may incur a long‐term tradeoff in adult survival.