A framework has been developed for extracting reliable twin statistics from a deformed microstructure using crystallographic twin identification techniques with spatially correlated electron backscatter diffraction (EBSD) data. The key features of this analysis are the use of the mathematical definition of twin relationships, the inclination of the common K 1 plane at a twin boundary, and the correct identification of the parent orientation in a parent/twin pair. Methods for identifying the parent in a parent/twin pair will be briefly discussed and compared. Twin area fractions are then categorized by operative twin systems, number of active twin variants in each system, and corrected twin widths. These statistics are reported here for ␣-zirconium samples deformed in quasi-static four-point bend beams and in a 100 m/s Taylor cylinder impact test. Analysis of the statistics also begins to reveal the roles that deformation rate and relative orientation of the boundary conditions to the material's symmetry axes play in determining the twinning activity that accommodates the imposed boundary conditions. These improved twin statistics can help quantify the deformation processes in materials that deform by twinning as well as serve to provide better validation of proposed models of the deformation processes.