2022
DOI: 10.30955/gnj.004413
|View full text |Cite
|
Sign up to set email alerts
|

Advanced deep learning method for Aerial image segmentation of landscape changes in pre-and post-disaster scenarios

Abstract: <p>The precise analysis of conditions in the landscape before and aftermath of the disaster is a mandatory challenge in aerial image landscape monitoring. The change in patterns of landscape, damaged pathways, and damaged areas will have a major impact without monitoring and redevelopment. Therefore, semantic segmentation of the landscape is required in order to analyze the changes and avoid other risks in pre-and post-disaster scenarios. To address these queries a deep learning-based landscape monitorin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?