Advanced design and Engi-economical evaluation of an automatic sugarcane seed cutting machine based RGB color sensor
Abdallah Elshawadfy Elwakeel,
Loai S. Nasrat,
Mohamed Elshahat Badawy
et al.
Abstract:There are many problems related to the use of machine learning and machine vision technology on a commercial scale for cutting sugarcane seeds. These obstacles are related to complex systems and the way the farmers operate them, the possibility of damage to the buds during the cleaning process, and the high cost of such technology. In order to address these issues, a set of RGB color sensors was used to develop an automated sugarcane seed cutting machine (ASSCM) capable of identifying the buds that had been ma… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.