The NiTi alloy, known as Nitinol, represents one of the most investigated smart alloys, exhibiting a shape memory effect and superelasticity. These, among many other remarkable attributes, enable its utilization in various applications, encompassing the automotive industry, aviation, space exploration, and, notably, medicine. Conventionally, Nitinol is predominantly produced in the form of wire or thin sheets that allow producing many required components. However, the manufacturing of complex shapes poses challenges due to the tenacity of the NiTi alloy, and different processing routes at elevated temperatures have to be applied. Overcoming this obstacle may be facilitated by additive manufacturing methods. This article provides an overview of the employment of additive manufacturing methods, allowing the preparation of the required shapes of Nitinol products while retaining their exceptional properties and potential applications.